

HRD Testing in Ovarian Cancer

Improving treatment with molecular biomarker screening

Organisation Name: Peter MacCallum Cancer Centre

Presenter: Dr Andrew Fellowes

andrew.fellowes@petermac.org

PPA National Forum, Innovations Plenary Tasmania 2023

Aim of this Innovation

- We aimed to implement a companion diagnostic assay for the detection of Homologous Recombination Deficiency (HRD) in newly diagnosed high grade epithelial ovarian carcinoma
- At project commencement in 2020, no TGA 'companion diagnostic' classification existed, and no FDA approved HRD companion diagnostic could be operated by Australian laboratories
- Anticipating clinical demand for HRD services and encouraged by collaboration with industry, we set about generating data for submission to NATA/TGA supporting the validity of a novel assay to detect HRD in ovarian cancer
- Maintenance PARP inhibitors have driven a paradigm shift in treatment of high-grade ovarian cancer.
 Long term survival data from SOLO1 and PAOLA1 clinical trials demonstrate 46% patients remain disease free beyond 5 years (compared to 10% on standard therapy)
- HRD as a molecular biomarker of response to targeted therapy is an example of the 'personalised medicine' paradigm. By providing a timely, accurate measurement of the HRD status from a patient's diagnostic or interval debulking specimen, we hope to drive improved survival for Australian ovarian cancer patients.
- MBS listing for HRD as a companion diagnostic for PARP inhibitor maintenance therapy is due Q4 2023

HRD and PARP inhibitors

HRD arises due to deficiency of factors (notably BRCA1 or BRCA2) involved in double-strand break repair

Ashworth et al. Nat Rev Clin Oncol. 2018

HRD is associated with increased survival in patients who receive Olaparib, independent of BRCA mutation status

Ray-Coquard et al. N Engl J Med

2019

Genomic Testing in Ovarian Cancer

Measuring Genomic Instability Identifies More Women with HRD

Testing Paradigm	Specimen	Origin Germline	Gene Panel				
			BRCA1/2	13-18%	BRCA mutations		
Detect the cause of HRD Detect the effect of HRD	Blood		Other HRR genes	~23%	HRR mutations		
			BRCA1/2	~20–25%	BRCA mutations		
	Tissue	Germline & Somatic	Other HRR genes	~31%	HRR mutations		
				~50%	Genomic Instability		
				Percent of women positive by each class of test			

Key Changes Implemented

We designed a validation strategy to compare HRD classification by our test method to a reference method using 132 histologically confirmed high grade serous/endometroid ovarian FFPE samples

Test Method: *SOPHiA Genetics HRD Solution* **Reference Method:** *Myriad myChoice HRD*

		SOPH	iA HRD			
		Positive	Negative			
	Positive Negative	TP	FN	68	PPA=93%	(Sensitivity)
Myriad		63	5		NPA=88%	(Specificity)
myChoice		FP	TN	64	PPV=89%	
		8	56		OPA=90%	(Accuracy)
		71	61	132		

Peter Mac received NATA accreditation for GI testing in May 2023

Outcomes so Far

Service offered from: June 2023 Clinical samples reported: 278

HRD Testing in Ovarian Cancer

Peter MacCallum Cancer Centre

Problem: Provide a timely, accurate measurement of the HRD status from a patient's diagnostic or interval debulking specimen

Solution: Proved non-inferiority between our test method (SOPHiA Genetics HRD Solution) and reference method (Myriad myChoice HRD)

Results: Testing high grade serous ovarian cancer using an HRD assay has increased PARPi predictive yield by 215% over BRCA testing alone

